loading...
دانلود تحقیق و مقاله
محمد غفوری تبار بازدید : 112 شنبه 15 آبان 1395 نظرات (0)

مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی دسته: مکانیک
بازدید: 5 بار
فرمت فایل: docx
حجم فایل: 8613 کیلوبایت
تعداد صفحات فایل: 228

از آنجائیکه شرکت های بزرگ در رشته نانو فناوری مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باش

قیمت فایل فقط 12,000 تومان

خرید

مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

 

از آنجائیکه شرکت های بزرگ در رشته نانو فناوری مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی و محیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشند بیشتر توسعه یافته اند.

پیش از این بر اساس تحلیل های دینامیک مولکولی و اندرکنش های بین اتم ها، مدلهای محیط پیوسته، نظیر مدلهای خرپایی، مدلهای فنری، قاب فضایی، بمنظور مدلسازی نانولوله ها، معرفی شده اند. این مدلها، بدلیل فرضیاتی که برای ساده سازی در استفاده از آنها لحاظ شده اند، قادر نیستند رفتار شبکه کربنی در نانولوله های کربنی را بطور کامل پوشش دهند.

در این پایان نامه از ثوابت میدان نیرویی بین اتمها و انرژی کرنشی و پتانسیل های موجود برای شبیه سازی رفتار نیرو های بین اتمی استفاده شده و به بررسی و آنالیز رفتار نانولوله های کربنی از چند دیدگاه مختلف می پردازیم، و مدل های تدوین شده را به شرح زیر ارائه می نمائیم:

  1. مدل انرژی- معادل
  2. مدل اجزاء محدود بوسیله نرم افزار ANSYS
  3. مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB

مدل های تدوین شده به منظور بررسی خصوصیات مکانیکی نانولوله کربنی تک دیواره بکار گرفته شده است. در روش انرژی- معادل، انرژی پتانسیل کل مجموعه و همچنین انرژی کرنشی نانو لوله کربنی تک دیواره بکار گرفته می شود. خصوصیات صفحه ای الاستیک برای نانو لوله های کربنی تک دیواره برای هر دو حالت صندلی راحتی و زیگزاگ در جهت های محوری و محیطی بدست آمده است.

در مدل اجزاء محدود بوسیله نرم افزار ANSYS ، به منظور انجام محاسبات عددی، نانو لوله کربنی با یک مدل ساختاری معادل جایگزین می شود.

در مدل اجزاء محدود سوم، كد عددی توسط نرم افزار MATLAB تدوین شده که از روش اجزاء محدود برای محاسبه ماتریس سختی برای یک حلقه شش ضلعی کربن، و تعمیم و روی هم گذاری آن برای محاسبه ماتریس سختی کل صفحه گرافیتی، استفاده شده است.

اثرات قطر و ضخامت دیواره بر روی رفتار مکانیکی هر دو نوع نانو لوله های کربنی تک دیواره و صفحه گرافیتی تک لایه مورد بررسی قرار گرفته است. مشاهده می شود که مدول الاستیک برای هر دو نوع نانو لوله های کربنی تک دیواره با افزایش قطر لوله بطور یکنواخت افزایش و با افزایش ضخامت نانولوله، کاهش می یابد. اما نسبت پواسون با افزایش قطر ،کاهش می یابد. همچنین منحنی تنش-کرنش برای نانولوله تک دیواره صندلی راحتی پیش بینی و تغییرات رفتار آنها مقایسه شده است. نشان داده شده که خصوصیات صفحه ای در جهت محیطی و محوریبرای هر دو نوع نانو لوله کربنی و همچنین اثرات قطر و ضخامت دیواره نانو لوله کربنی بر روی آنها یکسان می باشد. نتایج به دست آمده در مدل های مختلف یکدیگر را تایید می کنند، و نشان می دهند که هر چه قطر نانو لوله افزایش یابد، خواص مکانیکی نانولوله های کربنی به سمت خواص ورقه گرافیتی میل می کند.

نتایج این تحقیق تطابق خوبی را با نتایج گزارش شده نشان می دهد.

 واژه های کلیدی: نانولوله های کربنی ، خواص مکانیکی، محیط پیوسته ، تعادل- انرژی ، اجزاء محدود ،ورق گرافیتی تک لایه، ماتریس سختی.

 

فهرست مطالب:

فهرست علائم.. ر

فهرست جداول.. ز

فهرست اشکال.. س

 

چکیده.. 1

 

فصل اول..

مقدمه نانو. 3

1-1 مقدمه.. 4

1-1-1 فناوری نانو.. 4

1-2 معرفی نانولوله‌های كربنی.. 5

1-2-1 ساختار نانو لوله‌های كربنی.. 5

1-2-2 كشف نانولوله.. 7

1-3 تاریخچه.. 10

 

فصل دوم.

خواص و کاربردهای نانو لوله های کربنی.. 14

2-1 مقدمه.. 15

2-2 انواع نانولوله‌های كربنی.. 16

2-2-1 نانولوله‌ی كربنی تك دیواره(SWCNT). 16

2-2-2 نانولوله‌ی كربنی چند دیواره(MWNT). 19

2-3 مشخصات ساختاری نانو لوله های کربنی.. 21

2-3-1 ساختار یک نانو لوله تک دیواره.. 21

2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره.. 24

2-4 خواص نانو لوله های کربنی.. 25

2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن.. 29

2-4-1-1 مدول الاستیسیته.. 29

2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک.. 33

2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها.. 36

2-5 کاربردهای نانو فناوری.. 39

2-5-1 کاربردهای نانولوله‌های كربنی.. 40

2-5-1-1 كاربرد در ساختار مواد.. 41

2-5-1-2 كاربردهای الكتریكی و مغناطیسی.. 43

2-5-1-3 كاربردهای شیمیایی.. 46

2-5-1-4 كاربردهای مكانیكی.. 47

 

فصل سوم.

روش های سنتز نانو لوله های کربنی55

3-1 فرایندهای تولید نانولوله های کربنی.. 56

3-1-1 تخلیه از قوس الکتریکی.. 56

3-1-2 تبخیر/ سایش لیزری.. 58

3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD). 59

3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD ).. 61

3-1-5 رشد فاز بخار.. 62

3-1-6 الکترولیز.. 62

3-1-7 سنتز شعله.. 63

3-1-8 خالص سازی نانولوله های كربنی.. 63

3-2 تجهیزات.. 64

3-2-1 میكروسكوپ های الكترونی.. 66

3-2-2 میكروسكوپ الكترونی عبوری(TEM). 67

3-2-3 میكروسكوپ الكترونی پیمایشی یا پویشی(SEM). 68

3-2-4 میكروسكوپ های پروب پیمایشگر (SPM). 70

3-2-4-1 میكروسكوپ های نیروی اتمی (AFM). 70

3-2-4-2 میكروسكوپ های تونل زنی پیمایشگر (STM). 71

 

فصل چهارم.

شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته73

4-1 مقدمه.. 74

4-2 مواد در مقیاس نانو.. 75

4-2-1 مواد محاسباتی.. 75

4-2-2 مواد نانوساختار.. 76

4-3 مبانی تئوری تحلیل مواد در مقیاس نانو.. 77

4-3-1 چارچوب های تئوری در تحلیل مواد.. 77

4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد.. 77

4-4 روشهای شبیه سازی.. 79

4-4-1 روش دینامیک مولکولی.. 79

4-4-2 روش مونت کارلو.. 80

4-4-3 روش محیط پیوسته.. 80

4-4-4 مکانیک میکرو.. 81

4-4-5 روش المان محدود (FEM). 81

4-4-6 محیط پیوسته مؤثر.. 81

4-5 روش های مدلسازی نانو لوله های کربنی.. 83

4-5-1 مدلهای مولکولی.. 83

4-5-1-1 مدل مکانیک مولکولی (دینامیک مولکولی).. 83

4-5-1-2 روش اب انیشو.. 86

4-5-1-3 روش تایت باندینگ.. 86

4-5-1-4 محدودیت های مدل های مولکولی.. 87

4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها.. 87

4-5-2-1مدل یاکوبسون.. 88

4-5-2-2مدل کوشی بورن.. 89

4-5-2-3مدل خرپایی.. 89

4-5-2-4مدل قاب فضایی.. 92

4-6 محدوده کاربرد مدل محیط پیوسته.. 95

4-6-1 کاربرد مدل پوسته پیوسته.. 97

4-6-2 اثرات سازه نانولوله بر روی تغییر شکل.. 97

4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله.. 98

4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله.. 99

4-6-5 محدودیتهای مدل پوسته پیوسته.. 99

4-6-5-1محدودیت تعاریف در پوسته پیوسته.. 99

4-6-5-2محدودیت های تئوری کلاسیک محیط پیوسته.. 99

4-6-6 کاربرد مدل تیر پیوسته.. 100

 

فصل پنجم.

مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی .. 102

5-1 مقدمه.. 103

5-2 نیرو در دینامیک مولکولی.. 104

5-2-1 نیروهای بین اتمی.. 104

5-2-1-1پتانسیلهای جفتی.. 105

5-2-1-2پتانسیلهای چندتایی.. 109

5-2-2 میدانهای خارجی نیرو.. 111

5-3بررسی مدل های محیط پیوسته گذشته.. 111

5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی.. 113

5-4-1 مدل انرژی- معادل.. 114

5-4-1-1 خصوصیات محوری نانولوله های کربنی تک دیواره.. 115

5-4-1-2 خصوصیات محیطی نانولوله های کربنی تک دیواره.. 124

5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS. 131

5-4-2-1 تکنیک عددی بر اساس المان محدود.. 131

5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS 141

5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB 155

5-4-3-1 مقدمه.. 155

5-4-3-2 ماتریس الاستیسیته.. 157

5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی.. 158

5-4-3-4 تعیین و نگاشت المان.. 158

5-4-3-5 ماتریس کرنش-جابجائی.. 161

5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای.. 162

5-4-3-7 ماتریس سختی برای یک حلقه کربن.. 163

5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه.. 167

5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه 168

 

فصل ششم.

نتایج 171

6-1 نتایج حاصل از مدل انرژی-معادل.. 172

6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره.. 173

6-1-2خصوصیات محیطی نانولوله کربنی تک دیواره.. 176

6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS. 181

6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [ 182

6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره 192

6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB 196

 

فصل هفتم.

نتیجه گیری و پیشنهادات 203

7-1 نتیجه گیری.. 204

7-2 پیشنهادات.. 206

 فهرست مراجع207

 فهرست علائم

تعریف علائم اختصاری

 SWCNTs : Single-Walled Carbon Nanotubes

MWCNTs : Multi-Walled Carbon Nanotubes

CNTs : Carbon Nano Tubes

MWNTs : Multi-Walled Nano Tubes

FED : Field Emission Devices

TEM : Transmission Electron Microscope

SEM : Scanning Electron Microscopy

CVD : Chemical Vapor Deposition

PECVD : Plasma Enhanced Chemical Vapor Deposition

SPM : Scanning Probe Microscopy

NEMs : Nano Electro Mechanical System

AFM : Atomic Force Microscopy

STM : Scanning Tunnelling Microscopy

FEM : Finite Element Modeling

ASME : American Society of Mechanical Engineers

RVE : Representative Volume Element

SLGS: Single-Layered Grephene Sheet

 فهرست جداول

عنوان صفحه

جدول 4-1:اتفاقات مهم در توسعه مواد در 350 سال گذشته .......................................................................76

جدول 5-1: خصوصیات هندسی و الاستیک المان تیر.................................................................................135

جدول5-2: پارامترهای اندرکنش واندر والس ...........................................................................................150

جدول6-1: اطلاعات مربوط به مش بندی المان محدود مدل قاب فضایی در نرم افزار ANSYS ...............184

جدول6-2 : مشخصات هندسی نانولوله های کربنی تک دیواره در هر سه مدل ...........................................185

جدول6-3: داده ها برای مدول یانگ در هر سه مدل توسط نرم افزار ANSYS .......................................186

جدول6-4 : داده ها برای مدول برشی در هر سه مدل توسط نرم افزار ANSYS .......................................187

جدول6-5: مقایسه نتایج مدول یانگ برای مقادیر مختلف ضخامت گزارش شده .......................................194

جدول 6-6 : مشخصات صفحات گرافیتی مدل شده با آرایش صندلی راحتی .............................................196

جدول 6-7 : مشخصات صفحات گرافیتی مدل شده با آرایش زیگزاگ .....................................................197

جدول 6-8 : مقایسه مقادیر E، G و به دست آمده از مدل های تدوین شده در این تحقیق با نتایج موجود در منابع .....................................................................202

 فهرست اشکال

عنوان صفحه

شکل 1-1 : میکروگراف TEMکه لایه های نانو لوله کربنی چند دیواره را نشان می دهد ...............................4

شکل 1-2: اشکال متفاوت مواد با پایه کربن ..................................................................................................6

شکل 1-3: تصویر گرفته شده TEM که فلورن هایی کپسول شده به صورت نانولوله های کربنی تک دیوارهرا نشان می دهد .................................................................................................................................................7

شکل 1-4 : تصویر TEM از نانولوله کربنی دو دیواره که فاصله دو دیواره در عکس TEM nm 36/0 میباشد ..............................................................................................................................................................8

شکل 1-5: تصویر TEM گرفته شده از نانوپیپاد .........................................................................................8

شکل 2-1: تصویر نانو لوله های تک دیواره و چند دیواره کشف شده توسط ایجیما در سال 1991................15

شکل 2-2: انواع نانولوله: (الف) ورق گرافیتی (ب) نانولوله زیگزاگ (0، 12) (ج) نانولوله زیگزاگ (6، 6) (د) نانولوله کایرال (2، 10) ................................................................................17

شکل 2-3 : شبکه شش گوشه ای اتم های کربن ............................................................18

شکل2-4 : تصویر شماتیک شبکه شش گوشه ای ورق گرافیتی، شامل تعریف پارامترهای ساختاری پایه و توصیف اشکال نانولوله های کربنی تک دیواره .........................................................

شکل 2-6 : نانو پیپاد ..............................................................21

شکل 2-7 : شکلشماتیک یک نانو لوله که از حلقه ها شش ضلعی کربنی تشکیل شده است .......22

شکل2-8 : تصویر شماتیک یک حلقه شش ضلعی کربنی و پیوندهای مربوطه........................22

شکل 2-9: تصویر شماتیک شبکه کربن در سلول های شش ضلعی .......................23

شکل 2-10: توضیح بردار لوله کردن نانو لوله، بصورت ترکیب خطی از بردارهای پایه b , a ..............23

شکل2-11: نمونه های نانولوله های صندلی راحتی، زیگزاگ و کایرال و انتها بسته آنها که مرتبط است با تنوع فلورن ها ................................................................................24

شکل 2-12: تصویر سطح مقطع یک نانو لوله .......................................................25

شکل 2-13: مراحل آزاد سازی نانو لوله کربن ..............................................33

شکل 2-14 : مراحل کمانش و تبدیل پیوندها در یک نانو لوله تحت بار فشاری ....................36

شکل 2-15: نحوه ایجاد و رشد نقایص تحت بار کششی الف: جریان پلاستیک، ب: شکست ترد (در اثر ایجاد نقایص پنج و هفت ضلعی) ج: گردنی شدن نانو لوله در اثر اعمال بار کششی ......................38

شکل 2-16: تصویر میکروسکوپ الکترونی پیمایشی SEM اعمال بار کششی بر یک نانو لوله ...........39

شکل 2-17: شکل شماتیک یک نانولوله کربنی به عنوان نوک AFM. .........................47

شکل2-18: نانودنده ها .........................................................50

شکل 3-1: آزمایش تخلیه قوس .....................................................................56

شکل 3-2: دستگاه تبخیر/سایش لیزری .............................................58

شکل 3-3 : شماتیک ابزار CVD ....................................................60

شکل 3-4 : میکروگرافی که صاف و مستقیم بودن MWCNTs را که به روش PECVD رشد یافته نشان می دهد ...................................62

شکل 3-5 : میکروگراف که کنترل بر روی نانو لوله ها را نشان می دهد: (الف) 40–50 nmو (ب). 200–300 nm ............................................................62

شکل 3-6: نانولوله کربنی MWCNT به عنوان تیرک AFM ...............................71

شکل 4-1: تصویر شماتیک ارتباط بین زمان و مقیاس طول روشهای شبیه سازی چند مقیاسی .........75

شکل 4-2: مدل سازی موقعیت ذرات در محیط پیوسته ..........................77

شکل 4-3: محدوده طول و مقیاس زمان مربوط به روشهای شبیه سازی متداول .....................82

شکل 4-4: تصویر تلاقی ابزار اندازه گیری و روش های شبیه سازی ......................82

شکل 4-5 : تصویر شماتیک وابستگی درونی روش ها و اصل اعتبار روش .................83

شکل 4-6: تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه .............85

شکل 4-7: موقعیت نسبی اتمها در شبکه کربنی برای بدست آوردن طول پیوندها در نانولوله ........85

شکل 4- 8 : المان حجم معرف در نانو لوله کربنی ......................................90

شکل 4- 9 : مدلسازی محیط پیوسته معادل ......................90

شکل 4- 10 : المان حجم معرف برای مدلهای شیمیایی، خرپایی و محیط پیوسته ...........92

شكل4-11 : تصویر شماتیک تغییر شکل المان حجم معرف ...............................92

شکل4-12 : شبیه سازی نانو لوله بصورت یک قاب فضایی .......................93

شکل4- 13 : اندرکنشهای بین اتمی در مکانیک مولکولی .................93

شکل4-14: شکل شماتیک یک صفحه شبکه ایکربن شامل اتم های کربن در چیدمان های ششگوشه ای.96

شکل 4-15: شکل شماتیک گروهای مختلف نانولوله کربنی ................97

شکل 4-16: وابستگی کرنش بحرانی نانولوله به شعاع با ضخامت های تخمینی متفاوت ..............98

شکل 5-1: نمایش نیرو وپتانسیل لنارد-جونز برحسب فاصله بین اتمی r ........................107

شکل 5-2: نمایش نیرو وپتانسیل مورس برحسب فاصله بین اتمی r ...................108

شکل 5-3: تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه ..............109

شکل5-4: فعل و انفعالات بین اتمی در مکانیک مولکولی ...................115

شکل5-5 : شکل شماتیک (الف) یک نانولوله صندلی راحتی (ب) یک نانولوله زیگزاگ .......116

شکل5-6 : شکل شماتیک یک نانولوله صندلی راحتی (الف) واحد شش گوشه ای (ب) نیرو های توزیع شده روی پیوند b ...............................................117

شکل5-7 : شکل شماتیک یک نانولوله زیگزاگ(الف) واحد شش گوشه ای(ب) نیرو های توزیع شده روی پیوند b ............................................................120

شکل5– 8 : تصویر شماتیک توزیع نیروها برای یک نانولوله کربنی تک دیواره ............122

شکل 5-9: تصویر شماتیک توزیع نیرو در یک نانولوله کربنی زیگزاگ ...............124

شکل5- 10: تصویر شماتیک(الف) نانولوله کربنی Armchair، (ب) مدل تحلیلی برای تراکم در جهت محیطی(ج) روابط هندسی ...........................125

شکل 5-11: تصویر شماتیک(الف) نانولوله کربنیZigzag(ب)مدل تحلیلی برای فشار در جهتمحیطی...129

شکل 5-12: تعادل مکانیک مولکولی و مکانیک ساختاری برای تعاملات کووالانس و غیر کووالانس بین اتم های کربن(الف) مدل مکانیک مولکولی (ب) مدل مکانیک ساختاری ....................132

شکل 5-13: منحنی پتانسیل لنارد-جونز و نیروی واندروالس نسبت به فاصله اتمی ...............133

شکل5-14: رابطه نیرو (بین پیوند کربن-کربن) و کرنش بر اساس پتانسیل بهبود یافته مورس ......137

شکل 5-15:استفاده از المانمیله خرپایی برای شبیه سازی نیروهای واندروالس ............138

شکل5-16: منحنی نیرو-جابجائی غیر خطی میله خرپایی ..................139

شکل 5-17: تغییرات سختی فنر نسبت به جابجائی بین اتمی ..................140

شکل 5-18: مدل های المان محدود ایجاد شده برای اشکال مختلف نانولوله(الف):صندلی راحتی (7،7) (ب):زیگزاگ(7،0) (ج): نانولوله دودیواره (5،5) و (10،10) .................140

شکل5-19: المان های نماینده برای مدل های شیمیایی ، خرپایی و محیط پیوسته ..142

شکل 5-20: شبیه سازی نانولوله های کربنی تک دیواره به عنوان ساختار قاب فضایی .............144

شکل5-21: شرایط مرزی و بارگذاری بر روی مدل المان محدود نانو لوله کربنی تک دیواره: (الف) زیگزاگ (7،0) ، (ب) صندلی راحتی (7،7) ، (ج) زیگزاگ (0،10) ، (د) صندلی راحتی (7،7) .................................145

شکل5-22: شرایط مرزی و بارگذاری بر روی مدل المان محدود نانو لوله کربنی چند دیواره: (الف) مجموعه 4 دیواره نانولوله زیگزاگ (5،0) (14،0) (23،0) (32،0) تحت کشش خالص ، (ب) مجموعه 4 دیواره نانولوله صندلی راحتی (5،5) (10،10) (15،15) (20،20) تحت پیچش خالص ..........................145

شکل5-23: نانولوله تحت کشش ...............................147

شکل5-24: یک نانولوله کربنی تک دیواره شبیه سازی شده به عنوان ساختار قاب فضایی ...........148

شکل5-25 : شکل شماتیک اتمهای کربن و پیوند های کربن متصل کننده آنها در ورق گرافیت ..148

شکل 5-26: نمودار Eωa بر حسب فاصله بین اتمی ρa ........................150

شکل 5-27: شکل شماتیک شش گوشه ای کربن و اتم های کربن و پیوندهای کواالانس و واندروالس .....151

شکل5-28: شکل شماتیک شش گوشه ای کربن که تنها پیوندهای کووالانس را نشان می دهد .....151

شکل5-29 : سه حالت بارگذاری برای معادل سازی انرژی کرنشی مدل ها ....................152

شکل5-30 : شکل شماتیک از شش گوشه ای کربن و نیرو های غیر پیوندی ............154

شکل5-31 : شکل شماتیک شش گوشه ای کربن با در نظر گرفتن 9 پیوند واندروالس بین اتم های کربن ...154

شکل5-32: یک مدل جزئی از ساختار شبکه ای رول نشده که نانولوله کربنی را شکل می دهد. شش ضلعی های متساوی الاضلاع نماینده حلقه های شش ضلعی پیوند های کووالانس کربن می باشد، که هر رأس آن محل قرار گیری اتم کربن می باشد .................................................156

شکل5-33: شکل یک حلقه کربن به صورت یک شش ضلعی متساوی الاضلاع و هر اتم کربن به عنوان گره با نامگذاری قراردادی ......159

شکل 5-34: شکل یک ذوزنقه متساوی الساقین از حلقه شش گوشه ای کربن (الف) در فضای x و y (ب) شکل نگاشت یافته در فضای r و s ..........................................159

شکل 5-35: المان ذوزنقه ای هم اندازه و مشابه المان اصلی ABCF که در صفحه به اندازه زاویه θ چرخیده است ..........................................................163

شکل 5-36 : شش حالت ممکن ذوزنقه شکل گرفته در شش گوشه ای کربن ABCDEF. هر ذوزنقه یک شکل دوران یافته از دیگری است ..................................166

شکل 5-37 : حلقه شش گوشه ای کربن ABCDEF که تشکیل شده از دو ذوزنقه ABCD و DEFC، دراین شکل نشان داده شده که در این حالت تنها CF ایجاد شده است ..................167

شکل 5-38: شکل شماتیک حلقه کربن شش گوشه ای به عنوان المان پایه صفحه گرافیتی .........168

شکل 5-39 : پارامترهای هندسی ورق گرافیتی .......................169

شکل 5-40 : مدل ورق گرافیتی زیگزاگ.ورق گرافیتی تک لایه a)تحت کشش b)تحت بار های مماسی..170

شکل6-1: شکل شماتیک(الف) یک نانولوله صندلی راحتی(ب) یک نانولوله زیگزاگ ........172

شکل 6-2 : تغییرات مدول یانگ در جهت محوری E.........................173

شکل 6-3 : تغییرات مدول برشی G .........................................174

شکل 6-4 : تغییرات مدول یانگ در جهت محوری E نانولوله های کربنی با قطر یکسان، نسبت به ضخامت دیواره t ............................................174

شکل 6-5: تغییرات مدول برشی نانولوله های کربنی با قطر یکسان نسبت به ضخامت دیواره t.........175

شکل 6-6: تغییرات نسبت پواسون .................................175

شکل 6-7 : تغییرات مدول یانگ در جهت محیطی( Eθ) ...........................176

شکل 6-8: تغییرات مدول یانگ در جهت محیطی( Eθ) نانولوله های کربنی با قطر یکسان، نسبت به ضخامت دیواره t.............................177

شکل 6-9: تغییرات نسبت پواسون(νθz) ..................................177

شکل 6-10: مقایسه تغییرات مدول یانگ در جهت محوری E نسبت به قطر...............178

شکل 6-11: مقایسه تغییرات مدول یانگ در جهت محیطی ( Eθ) نسبت به قطر...............179

شكل 6-12: مقایسه تغییرات مدول برشی نسبت به قطر................................179

شکل 6-13: مقایسه تغییرات نسبت پواسون(νθz) نانولوله های کربنی نسبت به قطر............180

شکل6-14: نمودار تنش-کرنش برای نانولوله کربنی صندلی راحتی..................181

شکل6-15: شکل شماتیک شش گوشه ای کربن همرا با تنها 6 پیوند کووالانس.........181

شکل6-16: شکل شماتیک شش گوشه ای کربن و اتم های کربن و6 پیوند کواالانس و6پیوند واندروالس..182

شکل6-17: شکل شماتیک شش گوشه ای کربن با در نظر گرفتن 9 پیوند واندروالس بین اتم های کربن...182

شکل6-18: مش بندی المان محدود نانولوله های کربنی تک دیواره صندلی راحتی و زیگزاگ ......183

شکل6-19: نانولوله های کربنی تک دیواره صندلی راحتی(12،12) و زیگزاگ(14،0) تحت تست کشش...184

شکل6-20:کانتور تغییر شکل نانولوله های کربنی تک دیواره صندلی راحتی(12،12) تحت تست کشش....185

شکل6-21: نانولوله های کربنی تک دیواره صندلی راحتی(12،12) تحت تست پیچش .....186

شکل6-22: کانتور تغییر شکل نانولوله های کربنی تک دیواره صندلی راحتی(12،12) تحت تست پیچش ..187

شکل 6-23: مقایسه تغییرات مدول یانگ نانولوله تک دیواره صندلی راحتی نسبت به قطر برای هر سه مدل اجزاء محدود .........................................188

شکل 6-24: مقایسه تغییرات مدول یانگ نانولوله تک دیواره زیگزاگ نسبت به قطر برای هر سه مدل اجزاء محدود .......................188

شکل 6-25: مقایسه تغییرات مدول برشی نانولوله تک دیواره صندلی راحتی نسبت به قطر برای هر سه مدل اجزاء محدود .....................................189

شکل 6-26: مقایسه تغییرات مدول برشی نانولوله تک دیواره زیگزاگ نسبت به قطر برای هر سه مدل اجزاء محدود ...................................190

شکل 6-27:مقایسه تغییرات نسبت پواسون نانولوله تک دیواره نسبت به قطر برای هر سه مدل اجزاء محدود.190

شکل 6-28: مدل اجزاء محدود نانولوله تک دیواره (12و12) بعد از تست کشش ...........191

شکل 6-29: مدل اجزاء محدود نانولوله تک دیواره (12و12) بعد از تست پیچش ........192

شکل6-30: شماتیک سه شکل نانولوله: مدل مولکولی، مدل ساختاری، و مدل معادل پیوسته ......193

شکل6-31: فاصله بین لایه های ورق گرافیتی ..............193

شکل 6-32: مقایسه مدول یانگ برای نانولوله کربنی (8،8) در ضخامت های مختلف با نتایج موجود در مراجع ........195

شکل 6-33 : پارامترهای هندسی ورق گرافیتی .....................................196

شکل 6-34: شکل شماتیک حلقه کربن شش گوشه ای به عنوان المان پایه صفحه گرافیتی.........197

شکل 6-35: مقایسه تغییرات مدول یانگ صفحه گرافیتی تک دیواره صندلی راحتی نسبت n, t....... 198

شکل 6-36: مقایسه تغییرات مدول یانگ صفحه گرافیتی تک دیواره زیگزاگ نسبت n, t........198

شکل 6-37: مقایسه تغییرات مدول برشی صفحه گرافیتی تک دیواره صندلی راحتی نسبت n, t ...199

شکل 6-38: مقایسه تغییرات مدول برشی صفحه گرافیتی تک دیواره زیگزاگ نسبت n, t ..199

شکل 6-39 : مقایسه تغییرات نسبت پواسون صفحه گرافیتی تک دیواره صندلی راحتی نسبت n.......200

شکل 6-40: مقایسه تغییرات نسبت پواسون صفحه گرافیتی تک دیواره زیگزاگ نسبت n ..200

 

قیمت فایل فقط 12,000 تومان

خرید

برچسب ها : مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی , مدلسازی , آنالیز , خواص مکانیکی , نانولوله های کربنی , محیط پیوسته , تعادل انرژی , اجزا , محدود , ورق گرافیتی تک لایه , ماتریس سختی

محمد غفوری تبار بازدید : 155 دوشنبه 10 آبان 1395 نظرات (0)

تصیفه هوای آلوده با استفاده از سیستم بیوفیلتر

تصیفه هوای آلوده با استفاده از سیستم بیوفیلتر دسته: شیمی
بازدید: 25 بار
فرمت فایل: doc
حجم فایل: 1937 کیلوبایت
تعداد صفحات فایل: 122

در سالهای اخیر با مشخص شدن اثرات زیانبار تركیبات مختلف موجود در هوا تلاشهای زیادی برای یافتن روشهای ارزان و مؤثر حذف مواد آلاینده از هوا شروع شده است

قیمت فایل فقط 9,900 تومان

خرید

تصیفه هوای آلوده با استفاده از سیستم بیوفیلتر

 

چكیده

بیوفیلتراسیون به عنوان روشی برای تبدیل مواد آلاینده به تركیبات بی خطر بدون جذب انرژی زیاد و در شرایط دما و فشار محیط مورد توجه واقع شده است. مطابق تعریف، بیوفیلتراسیون عبارت است از روشی برای كنترل آلودگی كه در آن یك بستر جامد و فعال بیولوژیكی با جذب یا جذب سطحی آلاینده ها، بستر مناسب جهت بیواكسیداسیون آنها را فراهم می آورد. به دلیل موجود بودن عامل فعال بیولوژیكی كه غالباً گونه های خاص باكتریایی و تا حدودی قارچها و مخمرها هستند راندمان بیوفیلترها در مقایسه با انواع فیلترهای دیگر كه عمل جذب فقط با استفاده از ماده ای چون كربن فعال یا بنونیت صورت میگیرد بسیار بالاتر است.

امروزه بیوفیلترها بصورت موفقیت آمیزی در مقیاس صنعتی بكار گرفته می شود. در تحقیق حاضر پس از مرور یافته های علمی پیرامون فرایند بیوفیلتراسیون به بررسی عوامل مؤثر و پارامترهای یك بیوفیلتر پرداخته شده و در ادامه یك مدل ریاضی با لحاظ كردن شرایط فیزیكی دقیق حاكم بر بیوفیلتر و خصوصیات دقیق فیزیكی و شیمیایی سیستم و با كمترین فرضیات ساده كننده موجود بدست آمده است و در نهایت توسط روشهای عددی حل شده است. نتایج بدست آمده حاكی از همخوانی مناسب داده‌های تجربی با مدل بدست آمده دارد و نشانگر امكان استفاده از مدل حاصل برای بهینه سازی بیوفیلتر در شرایط عملیاتی می باشد.

واژه های كلیدی: بیوفیلتر، یبوفیلتراسیون، بیوفیلم، متانول، مدلسازی.

 

فهرست مطالب:

چکیده

فصل اول: روشهای تصفیه هوای آلوده

1-1-مقدمه

1-2-تركیبات آلی فرار (VOCS)

1-3-روشهای فیزیكی تصفیه هوای آلوده

1-3-1-چگالش

1-3-2-جذب سطحی

1-3-3-جذب

1-3-4-جداسازی توسط غشاء

1-4-روشهای شیمیایی تصفیه هوای آلوده

1-5-روشهای بیولوژیكی تصفیه هوای آلوده

1-5-1-روش بیواسكرابینگ

1-5-2-روش بیوتریكلینگ فیلتراسیون

فصل دوم: تثبیت سلولی

2-1-میكروبیولوژی فیلتر

2-2-تلقیح میكروارگانیسم ها به داخل بستر

2-3- تثبیت سلولی

2-3-1-ویژگی سلولهای تثبیت شده

2-3-2-روش های تثبیت سلولی

2-3-2-1-روش چسباندن

2-3-2-2-روش تله گذاری

2-3-2-3-روش محدود كردن سلولها

2-3-2-4-روش اجتماعی سلولی

2-3-3-كنترل توده بیولوژیكی موجود

فصل سوم:  بیوفلتراسیون

3-1-مقدمه

3-2-مروری بر روند تكامل بیوفیلتراسیون

3-3-مواد شیمیایی قابل حذف توسط بیوفیلتراسیون

3-4-تعریف بیوفیلتراسیون

3-5-تئوری بیوفیلتراسیون

3-6-مكانیسم عمل در بیوفیلتراسیون

3-7-انتخاب بستر فیلتر

3-7-1-انتخاب خاك به عنوان بستر

3-7-2-استفاده از كمپوست به عنوان بستر

3-7-3-استفاده از پیت[1] به عنوان بستر

3-7-4-استفاده از كربن فعال به عنوان بستر

3-7-5- استفاده از پرلیت[1] به عنوان بستر

3-7-6-استفاده از مواد سنتزی به عنوان بستر

3-8-سیستمهای بیوفیلراسیون

3-8-1-سیستم بازتك لایه

3-8-2-سیستم بسته تكه لایه

3-8-3-سیستم بسته چندلایه

3-8-4-سیستم چندمرحله ای

3-8-5-سیستم مدولار

3-8-6-سیستم Step feed

فصل چهارم:  مدلسازی بیوفیلتر

4-1-مقدمه

4-3-مدل اتنگراف (Ottengraf model)

ایرادات مدل اتنگراف

4-4-مدل زاروك  (Zarook et al. model)

4-5- مقایسه دو مدل اتنگراف و زاروك

4-6-مدل شریف دین و بالتزیس (Shareefdeen and Baltzis)

4-6-1-مقدمه

4-6-2-توصیف ریاضی فرایند

فرضیات بكاررفته در این مدل

4-6-3-پارامترهای معادله

4-6-4-روش حل معادلات

4-6-4-1-روش اختلاف محدود

4-6-4-2-روش شوتینگ

فصل پنجم: نتیجه گیری و پیشنهادات

5-1-نتیجه گیری و بحث

بررسی و بحث نمودارها

5-2-پیشنهادات

منابع

 

قیمت فایل فقط 9,900 تومان

خرید

برچسب ها : تصیفه هوای آلوده با استفاده از سیستم بیوفیلتر , تصیفه هوای آلوده , سیستم بیوفیلتر , بیوفیلتر , یبوفیلتراسیون , بیوفیلم , متانول , مدلسازی

محمد غفوری تبار بازدید : 123 یکشنبه 09 آبان 1395 نظرات (0)

مدلسازی و تشکیل هیدرات گازی

مدلسازی و تشکیل هیدرات گازی دسته: شیمی
بازدید: 3 بار
فرمت فایل: doc
حجم فایل: 1260 کیلوبایت
تعداد صفحات فایل: 46

با توجه به افزایش سهم گاز طبیعی در بازار مصرف جهانی، توجه به روش های انتقال بدون خط لوله افزایش یافته است بیشتر روش هایی مورد توجه قرار گرفته است

قیمت فایل فقط 6,900 تومان

خرید

مدلسازی و تشکیل هیدرات گازی

 

با توجه به افزایش سهم گاز طبیعی در بازار مصرف جهانی، توجه به روش های انتقال بدون خط لوله افزایش یافته است. بیشتر روش هایی مورد توجه قرار گرفته است كه ظرفیت ذخیره سازی در آن ها بالا و از نظر اقتصادی مقرون به صرفه باشند. یكی از ا ین روش ها كه امروزه بسیار مورد توجه است، روش حمل گاز توسط هیدرات میباشد. علاوه بر این امروزه كاربردهای صنعتی د یگری نیز بر ای این پد یده مطرح شده است و سبب شده است كه توجه به آن در صنعت بیشتر از پیش باشد . در پژوهش حاضر برای آشنایی بیشتر با این پدیده در فصل اول هیدرات گاز ی معرفی شده، ساختارهای رایج آن و مطالعات عمده ای كه در این زمینه صورت پذیرفته است ، به صورت مشروح بیان شده است . با توجه به مشكلاتی كه در زمینه استفاده از آن در صنعت وجود دارد، محققیق افزودن مواد بهبود دهنده به سیستم تشكیل هیدرات را پیشنهاد نموده اند. از این رو در فصل دوم به معرفی مواد بهبود دهنده و چگونگی تأ ثیرگذاری آن ها پرداخته شده است . در فصل سوم مدل پا یه محاسبات هیدرات معرفی شده سپس این مدل در حضور مواد بهبود دهنده مانند مواد فعال سطحی و هیدروتروپها اصلاح شده است، تا مدل پیشگوتری حاصل شود . در فصل چهارم نتا یج حاصل از مدلسازی برای سیستمهای مختلف تشكیل هیدرات برای مثال سیستم آب خالص، سیستمهای شامل ماده بازدارنده متانول و سیستمهای شامل انواع مواد بهبود دهنده رایج با نتایج تجربی مقایسه شده است و نشان داده شده است كه مدل با دقت بالایی قادر است فشار تشكیل هیدرات را در دما ی مورد نظر پیشبینی نماید. در فصل پنجم نتا یج كلی حاصل از ا ین پژوهش ارائه شده است و در ادامه پیشنهاداتی جهت ادامه این تحقیق برای علاقمندان به مطالعه این پدیده بیان گردیده است.

 

فهرست مطالب

 

چکیده1

مقدمه. 2

حفرات تشكیل دهنده هیدرات.. 5

دوازده وجهی با سطوح پنج ضلعی. 6

چهارده وجهی. 6

شانزده وجهی. 7

رفتار فازی تشکیل هیدرات :12

فرآیند تشکیل و تجزیه هیدرات :15

شرایط تشكیل هیدرات و ویژگی عمومی مولكولهای مهم ان :18

طبیعت شیمیایی مولكولهای مهم ان :19

بررسی هندسی مولكولهای مهم ان :19

هیدراتبه عنوان معضلی در صنعت نفت و گاز :20

فواید هیدرات گازی :21

بهبود شرایط تشكیل هیدرات گازی.. 23

مواد بهبود دهنده هیدرات :25

مواد فعال سطحی :26

تشکیل مایسل توسط مواد فعال سطحی :27

هیدروتروپ ها :30

اثر مواد بهبود دهنده بر فرآیند تشكیل هیدرات :33

مکانیزم تاثیر گذاری مواد بهبود دهنده :34

فصل سوم39

نتیجه گیری و پیشنهادها39

منابع و مآخذ :40

منابع لاتین 41

قیمت فایل فقط 6,900 تومان

خرید

برچسب ها : مدلسازی و تشکیل هیدرات گازی , مدلسازی , تشکیل هیدرات گازی , هیدرات , هیدرات گازی , پروژه , پزوهش , جزوه , مقاله , تحقیق , دانلود پروژه , دانلود پزوهش , دانلود جزوه , دانلود مقاله , دانلود تحقیق

محمد غفوری تبار بازدید : 138 شنبه 08 آبان 1395 نظرات (0)

مدلسازی و شبیه سازی سوئیچ MPLS و بررسی مقایسه ای نرم افزارهای موجود

مدلسازی و شبیه سازی سوئیچ MPLS و بررسی مقایسه ای نرم افزارهای موجود دسته: برق
بازدید: 13 بار
فرمت فایل: doc
حجم فایل: 205 کیلوبایت
تعداد صفحات فایل: 99

امروزه سرعت بیشتر و کیفیت سرویس بهتر مهمترین چالش های دنیای شبکه می باشند تلاشهای زیادی که در این راستا در حال انجام می باشد،

قیمت فایل فقط 7,900 تومان

خرید

مدلسازی و شبیه سازی سوئیچ MPLS و بررسی مقایسه ای نرم افزارهای موجود

 

امروزه سرعت بیشتر و کیفیت سرویس بهتر مهمترین چالش های دنیای شبکه می باشند. تلاشهای زیادی که در این راستا در حال انجام می باشد، منجر به ارائه فنآوری ها، پروتکل ها و روشهای مختلف مهندسی ترافیک شده است. در این پایان نامه بعد از بررسی آنها به معرفی MPLS که به عنوان یک فنآوری نوین توسط گروه IETF ارائه شده است، خواهیم پرداخت. سپس به بررسی انواع ساختار سوئیچ های شبکه خواهیم پرداخت و قسمتهای مختلف تشکیل دهنده یک سوئیچMPLS را تغیین خواهیم کرد. سرانجام با نگاهی به روشهای طراحی و شبیه سازی و نرم افزارهای موجود آن، با انتخاب زبان شبیه سازی SMPL، به شبیه سازی قسمتهای مختلف سوئیچ و بررسی نتایج حاصل می پردازیم. همچنین یک الگوریتم زمانبندی جدید برای فابریک سوئیچ های متقاطع با عنوان iSLIP اولویت دار بهینه معرفی شده است که نسبت به انواع قبلی دارای کارآیی بسیار بهتری می باشد.

 

فهرست مطالب

فصل اول: کیفیت سرویس و فنآوری های شبكه 1

1-1- مقدمه 1

1-2- كیفیت سرویس در اینترنت 1

1-2-1- پروتكل رزور منابع در اینترنت 3

1-2-2- سرویس های متمایز 4

1-2-3- مهندسی ترافیك 6

1-2-4- سوئیچنگ برحسب چندین پروتكل 9

1-3- مجتمع سازی IP وATM 9

1-3-1- مسیریابی در IP 12

1-3-2- سوئیچینگ 13

1-3-3- تركیب مسیریابی و سوئیچینگ 14

1-3-4- MPLS 20

فصل دوم: فنآوریMPLS 23

2-1- مقدمه 23

2-2- اساس كار MPLS 24

2-2-1- پشته برچسب 26

2-2-2- جابجایی برچسب 27

2-2-3- مسیر سوئیچ برچسب (LSR)27

2-2-4- كنترل LSP 29

2-2-5- مجتمع سازی ترافیك 30

2-2-6- انتخاب مسیر 30

2-2-7- زمان زندگی (TTL)31

2-2-8- استفاده از سوئیچ های ATM به عنوان LSR 32

2-2-9- ادغام برچسب 32

2-2-10- تونل 33

 

2-3- پروتكل های توزیع برچسب در MPLS 34

فصل سوم: ساختار سوئیچ های شبكه35

3-1- مقدمه 35

3-2- ساختار كلی سوئیچ های شبكه 35

3-3- كارت خط 40

3-4- فابریك سوئیچ 42

3-4-1- فابریك سوئیچ با واسطه مشترك 43

3-4-2 فابریك سوئیچ با حافظه مشترك 44

3-4-3- فابریك سوئیچ متقاطع 45

فصل چهارم: مدلسازی و شبیه‌سازی یك سوئیچ MPLS 50

4-1- مقدمه 50

4-2- روشهای طراحی سیستمهای تك منظوره 50

4-3- مراحل طراحی سیستمهای تك منظوره 52

4-3-1- مشخصه سیستم 53

4-3-2- تایید صحت 53

4-3-3- سنتز 54

4-4 – زبانهای شبیه سازی 54

4-5- زبان شبیه سازی SMPL 56

4-5-1- آماده سازی اولیه مدل 58

4-5-2 تعریف و كنترل وسیله 58

4-5-3 – زمانبندی و ایجاد رخدادها60

4-6- مدلهای ترافیكی 61

4-6-1- ترافیك برنولی یكنواخت 62

4-6-2- ترافیك زنجیره ای 62

4-6-3- ترافیك آماری 63

4-7- مدلسازی كارت خط در ورودی 64

عنوان صفحه

4-8- مدلسازی فابریك سوئیچ 66

4-8-1- الگوریتم iSLIP 66

4-8-2- الگوریتم iSLIP اولویت دار71

4-8-3- الگوریتم iSLIP اولویت دار بهینه 76

4-9- مدلسازی كارت خط در خروجی 79

4-9-1 – الگوریتم WRR 80

4-9-2- الگوریتم DWRR 81

4-10- شبیه سازی كل سوئیچ 82

4-11- كنترل جریان 90

فصل پنجم: نتیجه گیری و پیشنهادات 93

5-1- مقدمه 93

5-2- نتیجه گیری 93

5-3- پیشنهادات 94

مراجع ......

قیمت فایل فقط 7,900 تومان

خرید

برچسب ها : مدلسازی و شبیه سازی سوئیچ MPLS و بررسی مقایسه ای نرم افزارهای موجود , مدلسازی , شبیه سازی , سوئیچ MPLS , نرم افزارهای موجود , مقاله , پژوهش , تحقیق , پروژه , دانلود مقاله , دانلود پژوهش , دانلود تحقیق , دانلود پروژه

محمد غفوری تبار بازدید : 106 دوشنبه 03 آبان 1395 نظرات (0)

مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع دسته: برق
بازدید: 2 بار
فرمت فایل: doc
حجم فایل: 4266 کیلوبایت
تعداد صفحات فایل: 143

در سالهای اخیر، مسایل جدی كیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، كه بدلیل شدت استفاده از تجهیزات الكترونیكی حساس در فرآیند اتوماسیون است

قیمت فایل فقط 20,000 تومان

خرید

 مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

 

چكیده

در سالهای اخیر، مسایل جدی كیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، كه بدلیل شدت استفاده از تجهیزات الكترونیكی حساس در فرآیند اتوماسیون است. وقتی كه دامنه و مدت افت ولتاژ، از آستانه حساسیت تجهیزات مشتریان فراتر رود ، ممكن است این تجهیزات درست كار نكند، و موجب توقف تولید و هزینه­ی قابل توجه مربوطه گردد. بنابراین فهم ویژگیهای افت ولتاژها در پایانه های تجهیزات لازم است. افت ولتاژها عمدتاً بوسیله خطاهای متقارن یا نامتقارن در سیستمهای انتقال یا توزیع ایجاد می­شود. خطاها در سیستمهای توزیع معمولاً تنها باعث افت ولتاژهایی در باسهای مشتریان محلی می­شود. تعداد و ویژگیهای افت ولتاژها كه بعنوان عملكرد افت ولتاژها در باسهای مشتریان شناخته می­شود، ممكن است با یكدیگر و با توجه به مكان اصلی خطاها فرق كند. تفاوت در عملكرد افت ولتاژها  یعنی، دامنه و بویژه نسبت زاویه فاز، نتیجه انتشار افت ولتاژها از مكانهای اصلی خطا به باسهای دیگر است. انتشار افت ولتاژها از طریق اتصالات متنوع ترانسفورماتورها، منجر به عملكرد متفاوت افت ولتاژها در طرف ثانویه ترانسفورماتورها می­شود. معمولاً، انتشار افت ولتاژ بصورت جریان یافتن افت ولتاژها از سطح ولتاژ بالاتر به سطح ولتاژ پایین­تر تعریف می­شود. بواسطه امپدانس ترانسفورماتور كاهنده، انتشار در جهت معكوس، چشمگیر نخواهد بود. عملكرد افت ولتاژها در باسهای مشتریان را با مونیتورینگ یا اطلاعات آماری می­توان ارزیابی كرد. هر چند ممكن است این عملكرد در پایانه­های تجهیزات، بواسطه اتصالات سیم­پیچهای ترانسفورماتور مورد استفاده در ورودی كارخانه، دوباره تغییر كند. بنابراین، لازم است بصورت ویژه انتشار افت ولتاژ از باسها به تاسیسات كارخانه از طریق اتصالات متفاوت ترانسفورماتور سرویس دهنده، مورد مطالعه قرار گیرد. این پایان نامه با طبقه بندی انواع گروههای برداری ترانسفورماتور و اتصالات آن و همچنین دسته بندی خطاهای متقارن و نامتقارن به هفت گروه، نحوه انتشار این گروهها را از طریق ترانسفورماتورها با مدلسازی و شبیه­سازی انواع اتصالات سیم پیچها بررسی می­کند و در نهایت نتایج را ارایه می­نماید و این بررسی در شبکه تست چهارده باس IEEE برای چند مورد تایید می­شود.

 

كلید واژه­ها: افت ولتاژ، مدلسازی ترانسفورماتور، اتصالات ترانسفورماتور، اشباع، شبیه سازی.

 

Key words:  Voltage Sag, Transformer Modeling, Transformer Connection, Saturation, Simulation.

 

فهرست مطالب

 

1-1 مقدمه. 2

1-2 مدلهای ترانسفورماتور. 3

1-2-1 معرفی مدل ماتریسی Matrix Representation (BCTRAN Model) 4

1-2-2 مدل ترانسفورماتور قابل اشباع  Saturable Transformer Component (STC Model) 6

1-2-3 مدلهای بر مبنای توپولوژی Topology-Based Models. 7

2- مدلسازی ترانسفورماتور. 13

2-1 مقدمه. 13

2-2 ترانسفورماتور ایده آل.. 14

2-3 معادلات شار نشتی.. 16

2-4 معادلات ولتاژ. 18

2-5 ارائه مدار معادل.. 20

2-6 مدلسازی ترانسفورماتور دو سیم پیچه. 22

2-7 شرایط پایانه ها (ترمینالها). 25

2-8 وارد کردن اشباع هسته به شبیه سازی.. 28

2-8-1 روشهای وارد کردن اثرات اشباع هسته. 29

2-8-2 شبیه سازی رابطه بین و ........... 33

2-9 منحنی اشباع با مقادیر لحظهای.. 36

2-9-1 استخراج منحنی مغناطیس کنندگی مدار باز با مقادیر لحظهای.. 36

2-9-2 بدست آوردن ضرایب معادله انتگرالی.. 39

2-10 خطای استفاده از منحنی مدار باز با مقادیر rms. 41

2-11 شبیه سازی ترانسفورماتور پنج ستونی در حوزه زمان.. 43

2-11-1 حل عددی معادلات دیفرانسیل.. 47

2-12 روشهای آزموده شده برای حل همزمان معادلات دیفرانسیل.. 53

3- انواع خطاهای نامتقارن و اثر اتصالات ترانسفورماتور روی آن.. 57

3-1 مقدمه. 57

3-2 دامنه افت ولتاژ. 57

3-3 مدت افت ولتاژ. 57

3-4 اتصالات سیم پیچی ترانس.... 58

3-5 انتقال افت ولتاژها از طریق ترانسفورماتور. 59

§3-5-1 خطای تكفاز، بار با اتصال ستاره، بدون ترانسفورماتور. 59

§3-5-2 خطای تكفاز، بار با اتصال مثلث، بدون ترانسفورماتور. 59

§3-5-3 خطای تكفاز، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 60

§3-5-4 خطای تكفاز، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 60

§3-5-5 خطای تكفاز، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 60

§3-5-6 خطای تكفاز، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 60

§3-5-7 خطای دو فاز به هم، بار با اتصال ستاره، بدون ترانسفورماتور. 61

§3-5-8 خطای دو فاز به هم، بار با اتصال مثلث، بدون ترانسفورماتور. 61

§3-5-9 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 61

§3-5-10 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 61

§3-5-11 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 62

§3-5-12 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 62

§3-5-13 خطاهای دو فاز به زمین.. 62

3-6 جمعبندی انواع خطاها 64

3-7 خطای Type A ، ترانسفورماتور Dd.. 65

3-8 خطای Type B ، ترانسفورماتور Dd.. 67

3-9 خطای Type C ، ترانسفورماتور Dd.. 69

3-10 خطاهای Type D و Type F و Type G ، ترانسفورماتور Dd.. 72

3-11 خطای Type E ، ترانسفورماتور Dd.. 72

3-12 خطاهای نامتقارن ، ترانسفورماتور Yy.. 73

3-13 خطاهای نامتقارن ، ترانسفورماتور Ygyg.. 73

3-14 خطای Type A ، ترانسفورماتور Dy.. 73

3-15 خطای Type B ، ترانسفورماتور Dy.. 74

3-16 خطای Type C ، ترانسفورماتور Dy.. 76

3-17 خطای Type D ، ترانسفورماتور Dy.. 77

3-18 خطای Type E ، ترانسفورماتور Dy.. 78

3-19 خطای Type F ، ترانسفورماتور Dy.. 79

3-20 خطای Type G ، ترانسفورماتور Dy.. 80

3-21 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type A شبیه سازی با PSCAD.. 81

شبیه سازی با برنامه نوشته شده. 83

3-22 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type B شبیه سازی با PSCAD.. 85

شبیه سازی با برنامه نوشته شده. 87

3-23 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type C شبیه سازی با PSCAD.. 89

شبیه سازی با برنامه نوشته شده. 91

3-24 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type D شبیه سازی با PSCAD.. 93

شبیه سازی با برنامه نوشته شده. 95

3-25 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای  Type E شبیه سازی با PSCAD.. 97

شبیه سازی با برنامه نوشته شده. 99

3-26 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type F شبیه سازی با PSCAD.. 101

شبیه سازی با برنامه نوشته شده. 103

3-27 شكل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type G شبیه سازی با PSCAD.. 105

شبیه سازی با برنامه نوشته شده. 107

3-28 شكل موجهای ولتاژ – جریان چند باس شبكه 14 باس IEEE برای خطای Type D در باس 5. 109

3-29 شكل موجهای ولتاژ – جریان چند باس شبكه 14 باس IEEE برای خطای Type G در باس 5. 112

3-30 شكل موجهای ولتاژ – جریان چند باس شبكه 14 باس IEEE برای خطای Type A در باس 5. 115

4- نتیجه گیری و پیشنهادات... 121

مراجع. 123

 

فهرست شكلها

 

شكل (1-1) مدل ماتریسی ترانسفورماتور با اضافه كردن اثر هسته

صفحه 5

شكل (1-2) ) مدار ستاره­ی مدل ترانسفورماتور قابل اشباع

صفحه 6

شكل (1-3) ترانسفورماتور زرهی تک فاز

صفحه 9

شكل (1-4) مدار الکتریکی معادل شكل (1-3)

صفحه 9

شكل (2-1) ترانسفورماتور

صفحه 14

شكل (2-2) ترانسفورماتور ایده ال

صفحه 14

شكل (2-3) ترانسفورماتور ایده ال بل بار

صفحه 15

شكل (2-4) ترانسفورماتور با مولفه های شار پیوندی و نشتی

صفحه 16

شكل (2-5) مدرا معادل ترانسفورماتور

صفحه 20

شكل (2-6) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه

صفحه 24

شكل (2-7) ترکیب RL موازی

صفحه 26

شکل (2-8) ترکیب RC موازی

صفحه 27

شكل (2-9) منحنی مغناطیس کنندگی مدار باز ترانسفورماتور

صفحه 30

شكل (2-10) رابطه بین  و           

صفحه 30

شكل (2-11) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه با اثر اشباع

صفحه 32

شكل (2-12) رابطه بین و

صفحه 32

شكل (2-13) رابطه بین و

صفحه 32

شكل (2-14) منحنی مدار باز با مقادیر  rms

صفحه 36

شكل (2-15) شار پیوندی متناظر شكل (2-14) سینوسی

صفحه 36

شکل (2-16) جریان لحظه ای متناظر با تحریک ولتاژ سینوسی

صفحه 36

شكل (2-17) منحنی مدار باز با مقادیر لحظه­ای

صفحه 40

شكل (2-18) منحنی مدار باز با مقادیر rms

صفحه 40

شكل (2-19) میزان خطای استفاده از منحنی rms  

صفحه 41

شكل (2-20) میزان خطای استفاده از منحنی لحظه­ای

صفحه 41

شكل (2-21) مدار معادل مغناطیسی ترانسفورماتور سه فاز سه ستونه

صفحه 42

شكل (2-22) مدار معادل الكتریكی ترانسفورماتور سه فاز سه ستونه

صفحه 43

شكل (2-23) مدار معادل مغناطیسی ترانسفورماتور سه فاز پنج ستونه

صفحه 44

شكل (2-24) ترانسفورماتور پنج ستونه

صفحه 45

شكل (2-25) انتگرالگیری در یك استپ زمانی به روش اولر

صفحه 47

شكل (2-26) انتگرالگیری در یك استپ زمانی به روش trapezoidal

صفحه 49

شكل (3-1) دیاگرام فازوری خطاها

صفحه 62

شكل (3-2) شكل موج ولتاژ Vab

صفحه 63

شكل (3-3)  شكل موج ولتاژ Vbc

صفحه 63

شكل (3-4) شكل موج ولتاژ Vca

صفحه 63

شكل (3-5)  شكل موج ولتاژ Vab

صفحه 63

شكل (3-6) شكل موج جریان iA

صفحه 64

شكل (3-7) شكل موج جریان iB

صفحه 64

شكل (3-8) شكل موج جریان iA

صفحه 64

شكل (3-9) شكل موج جریان iA

صفحه 64

شكل (3-10)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 65

شكل (3-11)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 68

شكل (3-12)  شكل موجهای جریان ia , ib , ic

صفحه 68

شكل (3-13)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شكل (3-14)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شكل (3-15)  شكل موجهای جریان , iB iA

صفحه 69

شكل (3-16)  شكل موج جریان iA

صفحه 70

شكل (3-16)  شكل موج جریان iB

صفحه 70

شكل (3-17)  شكل موج جریان iC

صفحه 70

شكل (3-18)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 71

شكل (3-19)  شكل موجهای جریان ia , ib , ic

صفحه 71

شكل (3-20)  شكل موجهای ولتاژ Va , Vb , Vc

صفحه 73

شكل (3-21)  شكل موجهای جریان ia , ib , ic

صفحه 73

شكل (3-22)  شكل موجهای جریان ia , ib , ic

صفحه 74

شكل (3-23) شكل موج ولتاژ Va

صفحه 74

شكل (3-24) شكل موج ولتاژ Vb

صفحه 74

شكل (3-25) شكل موج ولتاژ Vc

صفحه 74

شكل (3-26) شكل موج جریانiA

صفحه 74

شكل (3-27) شكل موج جریان iB

صفحه 74

شكل (3-28) شكل موج جریان iC

صفحه 74

شكل (3-29) شكل موج جریانiA

صفحه 75

شكل (3-30) شكل موج جریان iB

صفحه 75

شكل (3-31) موج جریان iC

صفحه 75

شكل (3-32) شكل موج جریانiA

صفحه 75

شكل (3-33) شكل موج جریان iB

صفحه 75

شكل (3-34) شكل موج جریان iC

صفحه 75

شكل (3-35) شكل موج ولتاژ Va

صفحه 76

شكل (3-36) شكل موج ولتاژ Vb

صفحه 76

شكل (3-37) شكل موج ولتاژ Vc

صفحه 76

شكل (3-38) شكل موج جریانiA

صفحه 76

شكل (3-39) شكل موج جریان iB

صفحه 76

شكل (3-40) شكل موج جریان iC

صفحه 76

شكل (3-41) شكل موج جریانiA

صفحه 76

شكل (3-42) شكل موج جریان iB

صفحه 76

شكل (3-43) شكل موج جریان iC

صفحه 76

شكل (3-44) شكل موج ولتاژ Va

صفحه 77

شكل (3-45) شكل موج ولتاژ Vb

صفحه 77

شكل (3-46) شكل موج ولتاژ Vc

صفحه 77

شكل (3-47) شكل موج جریانiA

صفحه 77

شكل (3-48) شكل موج جریان iB

صفحه 77

شكل (3-49) شكل موج جریان iC

صفحه 77

شكل (3-50) شكل موج جریانiA

صفحه 77

شكل (3-51) شكل موج جریان iB

صفحه 77

شكل (3-52) شكل موج جریان iC

صفحه 77

شكل (3-53) شكل موج ولتاژ Va

صفحه 78

شكل (3-54) شكل موج ولتاژ Vb

صفحه 78

شكل (3-55) شكل موج ولتاژ Vc

صفحه 78

شكل (3-56) شكل موج جریانiA

صفحه 78

شكل (3-57) شكل موج جریان iB

صفحه 78

شكل (3-58) شكل موج جریان iC

صفحه 78

شكل (3-59) شكل موج جریانiA

صفحه 78

شكل (3-60)  شكل موج جریان iB

صفحه 78

شكل (3-61) شكل موج جریان iC

صفحه 78

شكل (3-62) شكل موج ولتاژ Va

صفحه 79

شكل (3-63) شكل موج ولتاژ Vb

صفحه 79

شكل (3-64) شكل موج ولتاژ Vc

صفحه 79

شكل (3-65) شكل موج جریانiA

صفحه 79

شكل (3-66) شكل موج جریان iB

صفحه 79

شكل (3-67) شكل موج جریان iC

صفحه 79

شكل (3-68) شكل موج جریانiA

صفحه 79

شكل (3-69) شكل موج جریان iB

صفحه 79

شكل (3-70) شكل موج جریان iC

صفحه 79

شكل (3-71) شكل موج ولتاژ Va

صفحه 80

شكل (3-72)  شكل موج ولتاژ Vb

صفحه 80

شكل (3-73) شكل موج ولتاژ Vc

صفحه 80

شكل (3-74) شكل موج جریانiA

صفحه 80

شكل (3-75) شكل موج جریان iB

صفحه 78

شكل (3-76) شكل موج جریان iC

صفحه 80

شكل (3-77) شكل موج جریانiA

صفحه 80

شكل (3-78) شكل موج جریان iB

صفحه 80

شكل (3-79) شكل موج جریان iC

صفحه 80

شكل (3-80) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شكل (3-81) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شكل (3-82) شكل موجهای جریان) (kV با PSCAD

صفحه 82

شكل (3-83) شكل موجهای جریان) (kV با PSCAD

صفحه 82

شكل (3-84) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شكل (3-85) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شكل (3-86) شكل موجهای جریان با برنامه نوشته شده

صفحه 84

شكل (3-87) شكل موجهای جریان با برنامه نوشته شده

صفحه 84

شكل (3-88) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شكل (3-89) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شكل (3-90) شكل موجهای جریان) (kV با PSCAD

صفحه 86

شكل (3-91) شكل موجهای جریان) (kV با PSCAD

صفحه 86

شكل (3-92) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شكل (3-93) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شكل (3-94) شكل موجهای جریان با برنامه نوشته شده

صفحه 88

شكل (3-95) شكل موجهای جریان با برنامه نوشته شده

صفحه 88

شكل (3-96) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شكل (3-97) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شكل (3-98) شكل موجهای جریان) (kV با PSCAD

صفحه 90

شكل (3-99) شكل موجهای جریان) (kV با PSCAD

صفحه 90

شكل (3-100) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شكل (3-101) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شكل (3-102) شكل موجهای جریان با برنامه نوشته شده

صفحه 92

شكل (3-103) شكل موجهای جریان با برنامه نوشته شده

صفحه 92

شكل (3-104) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شكل (3-105) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شكل (3-106) شكل موجهای جریان) (kV با PSCAD

صفحه 94

شكل (3-107) شكل موجهای جریان) (kV با PSCAD

صفحه 94

شكل (3-108) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شكل (3-109) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شكل (3-110) شكل موجهای جریان با برنامه نوشته شده

صفحه 96

شكل (3-111) شكل موجهای جریان با برنامه نوشته شده

صفحه 96

شكل (3-112) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 97

شكل (3-113) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 97

 شكل (3-114) شكل موجهای جریان) (kV با PSCAD

صفحه 98

شكل (3-115) شكل موجهای جریان) (kV با PSCAD

صفحه 98

شكل (3-116) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شكل (3-117) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شكل (3-118) شكل موجهای جریان با برنامه نوشته شده

صفحه 100

شكل (3-119) شكل موجهای جریان با برنامه نوشته شده

صفحه 100

شكل (3-120) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شكل (3-121) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شكل (3-122) شكل موجهای جریان) (kV با PSCAD

صفحه 102

شكل (3-123) شكل موجهای جریان) (kV با PSCAD

صفحه 102

شكل (3-124) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شكل (3-125) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شكل (3-126) شكل موجهای جریان با برنامه نوشته شده

صفحه 104

شكل (3-127) شكل موجهای جریان با برنامه نوشته شده

صفحه 104

شكل (3-128) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شكل (3-129) شكل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شكل (3-130) شكل موجهای جریان) (kV با PSCAD

صفحه 106

شكل (3-131) شكل موجهای جریان) (kV با PSCAD

صفحه 106

شكل (3-132) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شكل (3-133) شكل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شكل (3-134) شكل موجهای جریان با برنامه نوشته شده

صفحه 108

شكل (3-135) شكل موجهای جریان با برنامه نوشته شده

صفحه 108

شكل (3-136) شكل موجهای ولتاژ) (kV

صفحه 109

شكل (3-137) شكل موجهای ولتاژ) (kV

صفحه 110

شكل (3-138) شكل موجهای جریان (kA)

صفحه 111

شكل (3-139) شكل موجهای ولتاژ) (kV

صفحه 112

شكل (3-140) شكل موجهای ولتاژ) (kV

صفحه 113

شكل (3-141) شكل موجهای جریان (kA)

صفحه 114

شكل (3-142) شكل موجهای جریان (kA)

صفحه 115

شكل (3-143) شكل موجهای جریان (kA)

صفحه 116

شكل (3-144) شكل موجهای جریان (kA)

صفحه 117

شكل (3-145) شبكه 14 باس IEEE

صفحه 118

قیمت فایل فقط 20,000 تومان

خرید

برچسب ها : مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع , پایان نامه , مدلسازی , شبیه سازی , اثر اتصالات , ترانسفورماتور , چگونگی انتشار , تغییرات ولتاژ , شبکه , اثر اشباع , پروژه , پژوهش , پایان نامه , مقاله , جزوه , دانلود پروژه , دانلود پژوهش , دانلود پایان نامه , دانلود مقاله , دانلود جزوه

اطلاعات کاربری
  • فراموشی رمز عبور؟
  • آمار سایت
  • کل مطالب : 4728
  • کل نظرات : 22
  • افراد آنلاین : 291
  • تعداد اعضا : 13
  • آی پی امروز : 365
  • آی پی دیروز : 414
  • بازدید امروز : 3,725
  • باردید دیروز : 1,456
  • گوگل امروز : 0
  • گوگل دیروز : 2
  • بازدید هفته : 6,939
  • بازدید ماه : 6,939
  • بازدید سال : 108,422
  • بازدید کلی : 1,410,147